જો ${\left( {x + 10} \right)^{50}} + {\left( {x - 10} \right)^{50}} = {a_0} + {a_1}x + {a_2}{x^2} + .... + {a_{50}}{x^{50}}$ , જ્યાં $x \in R$; તો $\frac{{{a_2}}}{{{a_0}}}$ ની કિમત મેળવો.
$12.50$
$12$
$12.25$
$12.75$
જો $\left(x^{2}+\frac{1}{b x}\right)^{11}$ માં $x^{7}$ નો સહગુણક અને $\left(x-\frac{1}{b x^{2}}\right)^{11}, b \neq 0$ માં $x^{-7}$ સહગુણક સમાન હોય તો $b$ ની કિમંત મેળવો.
${\left[ {\sqrt{\frac{ x }{3}} + \frac{{\sqrt 3 }}{{{x^2}}}} \right]^{10}}$ ના વિસ્તરણમાં અચળપદ મેળવો.
જો $K$ એ $( 1 + x + ax^2) ^{10}$ ના વિસ્તરણમાં $x^4$ નો સહગુણક હોય તો $'a'$ ની કઈ કિમત માટે $K$ ન્યૂનતમ થાય?
$(1-x)^{30} \, (1 + x + x^2)^{29}$ ના વિસ્તરણમાં $x^{37}$ નો સહગુણક મેળવો
$(1+a)^{n}$ ના વિસ્તરણનાં ત્રણ ક્રમિક પદોના સહગુણકોનો ગુણોત્તર $1: 7 : 42$ છે. $n$ શોધો.